Next-generation sequencing is widely applied to the investigation of pedigree data for gene discovery. However, identifying plausible disease-causing variants within a robust statistical framework is challenging. Here, we introduce BICEP: a Bayesian inference tool for rare variant causality evaluation in pedigree-based cohorts.
View Article and Find Full Text PDFMyocyte Enhancer Factor 2C (MEF2C) is a transcription factor that plays a crucial role in neurogenesis and synapse development. Genetic studies have identified MEF2C as a gene that influences cognition and risk for neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ). Here, we investigated the involvement of MEF2C in these phenotypes using human-derived neural stem cells (NSCs) and glutamatergic induced neurons (iNs), which represented early and late neurodevelopmental stages.
View Article and Find Full Text PDFCopy number variants (CNVs) have been implicated in many human diseases, including psychiatric disorders. Whole genome sequencing offers advantages in CNV calling compared to previous array-based methods. Here we present a robust and transparent CNV calling pipeline, PECAN (PEdigree Copy number vAriaNt calling), for short-read, whole genome sequencing data, comprised of a novel combination of four calling methods and structural variant genotyping.
View Article and Find Full Text PDFEnlarged lateral ventricle (LV) volume and decreased volume in the corpus callosum (CC) are hallmarks of schizophrenia (SZ). We previously showed an inverse correlation between LV and CC volumes in SZ, with global functioning decreasing with increased LV volume. This study investigates the relationship between LV volume, CC abnormalities, and the microRNA MIR137 and its regulated genes in SZ, because of MIR137's essential role in neurodevelopment.
View Article and Find Full Text PDF