Publications by authors named "A Cordova-Palomera"

Article Synopsis
  • - The text discusses the challenges of detecting complex genetic interactions (epistasis) that influence human traits, pointing out that traditional regression methods struggle with high-order interactions in large genomic datasets due to computational limitations and inadequacies in modeling biological interactions properly.
  • - It introduces the epiTree pipeline, built on a framework called Predictability, Computability, Stability (PCS), which utilizes tree-based models to identify higher-order interactions in genomic data by selecting relevant variants based on tissue-specific gene expression and employing iterative random forests.
  • - The efficacy of the epiTree pipeline is validated through two case studies from the UK Biobank, demonstrating its ability to reveal both known and novel genetic interactions in predicting traits like red hair and multiple sclerosis, thus potentially
View Article and Find Full Text PDF

As findings on the epidemiological and genetic risk factors for coronavirus disease-19 (COVID-19) continue to accrue, their joint power and significance for prospective clinical applications remains virtually unexplored. Severity of symptoms in individuals affected by COVID-19 spans a broad spectrum, reflective of heterogeneous host susceptibilities across the population. Here, we assessed the utility of epidemiological risk factors to predict disease severity prospectively, and interrogated genetic information (polygenic scores) to evaluate whether they can provide further insights into symptom heterogeneity.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital heart disease (CHD) has a strong genetic component, yet previous research has struggled to pinpoint inherited risks due to limited analysis of common variants in small groups of people.
  • A large study involving 55,342 participants reanalyzed genetic data, identifying 16 new genetic locations associated with different types of CHD, including 12 rare variants with notable effects.
  • The findings indicate that while each type of CHD is heritable, they appear to have distinct genetic risks, underscoring the complexity of CHD genetics.
View Article and Find Full Text PDF

Parkinson's disease (PD) treatments modify disease symptoms but have not been shown to slow progression, characterized by gradual and varied motor and non-motor changes overtime. Variation in PD progression hampers clinical research, resulting in long and expensive clinical trials prone to failure. Development of models for short-term PD progression prediction could be useful for shortening the time required to detect disease-modifying drug effects in clinical studies.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential.

View Article and Find Full Text PDF