Publications by authors named "A Collauto"

Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.

View Article and Find Full Text PDF
Article Synopsis
  • MitoNEET, an iron-sulphur protein in the mitochondrial outer membrane, is linked to the drug pioglitazone but its exact molecular function remains unclear.
  • Researchers identified a specific site for nitric oxide (NO) access to the mitoNEET's [2Fe-2S] cluster and found that both oxygen and pioglitazone can block this access.
  • This discovery suggests a role for mitoNEET in mitochondrial signal transduction related to hypoxia, revealing new insights into how [Fe-S] clusters may function in signaling processes in eukaryotic cells.
View Article and Find Full Text PDF

Reaction of a molecular zinc-hydride [{(ArNCMe)CH}ZnH] (Ar=2,6-di-isopropylphenyl) with 0.5 equiv. of [Ni(CO)Cp] led to the isolation of a nickel-zinc hydride complex containing a bridging 3-centre,2-electron Ni-H-Zn interaction.

View Article and Find Full Text PDF

Acetyl coenzyme A synthase (ACS) catalyzes the formation and deconstruction of the key biological metabolite, acetyl coenzyme A (acetyl-CoA). The active site of ACS features a {NiNi} cluster bridged to a [FeS] cubane known as the A-cluster. The mechanism by which the A-cluster functions is debated, with few model complexes able to replicate the oxidation states, coordination features, or reactivity proposed in the catalytic cycle.

View Article and Find Full Text PDF

Complexes featuring multiple metal centres are of growing interest regarding metal-metal cooperation and its tuneability. Here the synthesis and characterisation of heterobimetallic complexes of a 3d metal (4: Mn, 5: Co) and lanthanum supported by a (1,1,1-tris[(3-methoxysalicylideneamino)methyl]ethane) ligand is reported, as well as discussion of their electronic structure electron paramagnetic resonance (EPR) spectroscopy, electrochemical experiments and computational studies. Competitive binding experiments of the ligand and various metal salts unequivocally demonstrate that in these heterobimetallic complexes the 3d metal (Mn, Co) selectively occupies the κ-NO binding site of the ligand, whilst La occupies the κ-O metal binding site in line with their relative oxophilicities.

View Article and Find Full Text PDF