Publications by authors named "A Cogoli"

Background/aims: Several limiting factors for human health and performance in microgravity have been clearly identified arising from the immune system, and substantial research activities are required in order to provide the basic information for appropriate integrated risk management. The gravity-sensitive nature of cells of the immune system renders them an ideal biological model in search for general gravity-sensitive mechanisms and to understand how the architecture and function of human cells is related to the gravitational force and therefore adapted to life on Earth.

Methods: We investigated the influence of altered gravity in parabolic flight and 2D clinostat experiments on key proteins of activation and signaling in primary T lymphocytes.

View Article and Find Full Text PDF

We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased.

View Article and Find Full Text PDF

This study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in μg. Immunosuppression during spaceflight is a major barrier to safe, long-term human space habitation and travel. The goals of these experiments were to prove that μg was the cause of impaired T cell activation during spaceflight, as well as understand the mechanisms controlling early T cell activation.

View Article and Find Full Text PDF

In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation.

View Article and Find Full Text PDF

Aim: The aim of this study was to analyze and compare the deposition of cartilage-specific extracellular matrix components and cellular organization in scaffold-free neocartilage produced in microgravity and simulated microgravity.

Methods: Porcine chondrocytes were seeded (100 x 10(6)/mL) into cylindrical culture chambers (n = 8) and cultured in the following environments: (i) microgravity during the Flight 7S (Cervantes mission) on the International Space Station (ISS), (ii) simulated microgravity in a random positioning machine (RPM), and (iii) normal gravity (1 g, control). After 16 days, each neocartilage tissue was processed for histology, immunohistochemistry, quantitative real-time reverse transcriptase-polymerase chain reaction, and histomorphometric analysis.

View Article and Find Full Text PDF