Publications by authors named "A Cockrell"

Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity.

View Article and Find Full Text PDF

Background Context: Transcranial Motor Evoked Potentials (TcMEPs) can improve intraoperative detection of femoral plexus and nerve root injury during lumbosacral spine surgery. However, even under ideal conditions, TcMEPs are not completely free of false-positive alerts due to the immobilizing effect of general anesthetics, especially in the proximal musculature. The application of transcutaneous stimulation to activate ventral nerve roots directly at the level of the conus medularis (bypassing the brain and spinal cord) has emerged as a method to potentially monitor the motor component of the femoral plexus and lumbosacral nerves free from the blunting effects of general anesthesia.

View Article and Find Full Text PDF

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses.

View Article and Find Full Text PDF

Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs.

View Article and Find Full Text PDF

The RD-X19 is an investigational, handheld medical device precisely engineered to emit blue light through the oral cavity to target the oropharynx and surrounding tissues. At doses shown to be noncytotoxic in an in vitro three-dimensional human epithelial tissue model, the monochromatic visible light delivered by RD-X19 results in light-initiated expression of immune stimulating cytokines IL-1α and IL-1β, with corresponding inhibition of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) replication. A single exposure of 425 nm blue light at 60 J/cm led to greater than 99% reductions against all SARS-CoV-2 strains tested in vitro, including the more transmissible (Alpha) and immune evasive (Beta) variants.

View Article and Find Full Text PDF