Human peroxiredoxin-5 (PRDX5) is a unique redox-sensitive protein that plays a dual role in brain ischemia-reperfusion injury. While intracellular PRDX5 has been reported to act as a neuroprotective antioxidative enzyme by scavenging peroxides, once released extracellularly from necrotic brain cells, the protein aggravates neural cell death by inducing expression of proinflammatory cytokines in macrophages through activation of Toll-like receptor (TLR) 2 (TLR2) and 4 (TLR4). Although recent evidence showed that PRDX5 was able to interact directly with TLR4, little is known regarding the role of the cysteine redox state of PRDX5 on its DAMP function.
View Article and Find Full Text PDFInflammation is a pathophysiological response of innate immunity to infection or tissue damage. This response is among others triggered by factors released by damaged or dying cells, termed damage-associated molecular pattern (DAMP) molecules that act as danger signals. DAMPs interact with pattern recognition receptors (PRRs) to contribute to the induction of inflammation.
View Article and Find Full Text PDFBackground: Peroxiredoxins are ubiquitous thiol-dependent peroxidases that represent a major antioxidant defense in both prokaryotic cells and eukaryotic organisms. Among the six vertebrate peroxiredoxin isoforms, peroxiredoxin-5 (PRDX5) appears to be a particular peroxiredoxin, displaying a different catalytic mechanism, as well as a wider substrate specificity and subcellular distribution. In addition, several evolutionary peculiarities, such as loss of subcellular targeting in certain species, have been reported for this enzyme.
View Article and Find Full Text PDFSalinity threatens productivity of economically important crops such as tomato ( L.). WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance.
View Article and Find Full Text PDFThioredoxin-2 (Trx2) is a mitochondrial protein using a dithiol active site to reduce protein disulfides. In addition to the cytoprotective function of this enzyme, several studies have highlighted the implication of Trx2 in cellular signaling events. In particular, growing evidence points to such roles of redox enzymes in developmental processes taking place in the central nervous system.
View Article and Find Full Text PDF