Publications by authors named "A Clabaut"

Sclerostin is a Wnt signaling pathway inhibitor that negatively regulates bone formation. Bone-marrow-derived stromal cell (BMSC) differentiation is influenced by the Wnt pathway, leading to the hypothesis that higher levels of sclerostin might be associated with an increase in bone marrow adiposity (BMA). The main purpose of this study was to determine whether a relationship exists between circulating sclerostin and BMA in post-menopausal women with and without fragility fractures.

View Article and Find Full Text PDF

Background: Systemic inflammation is the main factor underlying secondary osteoporosis in patients with rheumatoid arthritis (RA). Janus kinase inhibitors (JAKi), such as tofacitinib (Tofa), can control systemic inflammation and may have beneficial effects on bone in various models. This might be due to direct effects on the bone microenvironment and not exclusively based on their anti-inflammatory function.

View Article and Find Full Text PDF

In human, bone loss is associated with increased marrow adipose tissue and recent data suggest that medullary adipocytes could play a role in osteoporosis by acting on neighboring bone-forming osteoblasts. Supporting this hypothesis, we previously showed, in a coculture model based on human bone marrow stromal cells, that factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this work, we employed an original integrative bioinformatics approach connecting proteomic and transcriptomic data from adipocytes and osteoblasts, respectively, to investigate the mechanisms underlying their crosstalk.

View Article and Find Full Text PDF

Our preliminary findings have lead us to propose bone marrow adipocyte secretions as new contributors to bone loss. Indeed, using a coculture model based on human bone marrow stromal cells, we previously showed that soluble factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this study, microarray gene expression profiling showed profound transcriptomic changes in osteoblasts following coculture and confirmed the enrichment of the adipocyte gene signature.

View Article and Find Full Text PDF

Osteoporosis is characterized by reduced bone formation and accumulation of adipocytes in the bone marrow compartment. The decrease in bone mass results from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The deficiency of bone cells to replace the resorpted bone can be due to a preferential differentiation of bone marrow stromal cells into adipocytes at the expense of osteoblasts.

View Article and Find Full Text PDF