Four distinct zeolitic imidazolate frameworks (ZIFs) are prepared using zinc and cobalt ions with 2-aminobenzimidazole and 2-methylimidazole as linkers to explore their electrochemical properties as platforms for aldehyde detection. The resulting ZIF-based sensors exhibit high sensitivity, low detection limits, and robust performance when applied to real-world samples.
View Article and Find Full Text PDFDeveloping efficient antibacterial nanomaterials has potential across diverse fields, but it requires a deeper understanding of material-bacteria interactions. In this study, a novel 2D core-shell MoAlB@MBene structure is synthesized using a mild wet-chemical etching approach. The growth of E.
View Article and Find Full Text PDFManipulating and exerting a nanoscale control over the structure of multicomponent materials represents a powerful strategy for tailoring multifunctional composites for structural health monitoring applications. The use of self-sensing, electroactive cementitious composites in large-scale applications is severely hindered by the absence of clear directives and a thorough understanding of the electrical conduction mechanisms taking place within the cement matrix. Here we report on a nanoscale approach towards this goal which is accomplished the development of a novel, multifunctional cementitious composite incorporating electrochemically exfoliated graphene (EEG).
View Article and Find Full Text PDF