Publications by authors named "A Cicco"

Galactocerebroside lipid nanotubes are membrane-mimicking systems for studying the function and structure of proteins involved in membrane shape remodeling, such as in intracellular trafficking, cell division, and migration or involved in the formation of membrane contact sites. They exhibit a constant and small diameter of 30 nm and a length of up to 2 μm. They can be functionalized with lipid ligands, providing a large binding surface for protein without membrane shape remodeling.

View Article and Find Full Text PDF

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids.

View Article and Find Full Text PDF

Pressure-induced transformations in an archetypal chalcogenide glass (GeSe) have been investigated up to 157 GPa by X-ray absorption spectroscopy (XAS) and molecular dynamics (MD) simulations. Ge and Se K-edge XAS data allowed simultaneous tracking of the correlated local structural and electronic changes at both Ge and Se sites. Thanks to the simultaneous analysis of extended X-ray absorption fine structure (EXAFS) signals of both edges, reliable quantitative information about the evolution of the first neighbor Ge-Se distribution could be obtained.

View Article and Find Full Text PDF

Electron microscopy has played a pivotal role in elucidating the ultrastructure of membrane contact sites between cellular organelles. The advent of cryo-electron microscopy has ushered in the ability to determine atomic models of constituent proteins or protein complexes within sites of membrane contact through single particle analysis. Furthermore, it enables the visualization of the three-dimensional architecture of membrane contact sites, encompassing numerous copies of proteins, whether in vitro reconstituted or directly observed in situ using cryo-electron tomography.

View Article and Find Full Text PDF

Improvement of electrochemical technologies is one of the most popular topics in the field of renewable energy. However, this process requires a deep understanding of the electrode-electrolyte interface behavior under conditions. X-ray absorption spectroscopy (XAS) is widely employed to characterize electrode materials, providing element-selective oxidation state and local structure.

View Article and Find Full Text PDF