Interactions between magnetic fields advected by matter play a fundamental role in the Universe at a diverse range of scales. A crucial role these interactions play is in making turbulent fields highly anisotropic, leading to observed ordered fields. These in turn, are important evolutionary factors for all the systems within and around.
View Article and Find Full Text PDFBackground: Radical prostatectomy (RP) is recommended in case of localized or locally advanced prostate cancer (PCa), but it can lead to side effects, including urinary incontinence (UI) and erectile dysfunction (ED). Magnetic resonance imaging (MRI) is recommended for PCa diagnosis and staging, but it can also improve preoperative risk-stratification.
Purpose: This nonsystematic review aims to provide an overview on factors involved in RP side effects, highlighting anatomical and pathological aspects that could be included in a structured report.
The propagation and energy coupling of intense laser beams in plasmas are critical issues in inertial confinement fusion. Applying magnetic fields to such a setup has been shown to enhance fuel confinement and heating. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in a magnetized underdense plasma.
View Article and Find Full Text PDFObjectives: To evaluate MRI diagnostic performance in detecting clinically significant prostate cancer (csPCa) in peripheral-zone PI-RADS 4 lesions, comparing those with clearly restricted diffusion (DWI-score 4), and those with equivocal diffusion pattern (DWI-score 3) and positive dynamic contrast-enhanced (DCE) MRI.
Methods: This observational prospective study enrolled 389 men referred to MRI and, if positive (PI-RADS 3 with PSA-density [PSAD] ≥ 0.15 ng/mL/mL, 4 and 5), to MRI-directed biopsy.