The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.
View Article and Find Full Text PDFIn this study, CRISPR/Cas9 genome editing was used to knockout the bgl2 gene encoding intracellular β-glucosidase filamentous fungus Penicillium verruculosum. This resulted in a dramatic reduction of secretion of cellulolytic enzymes. The study of P.
View Article and Find Full Text PDFRecently, the study of chitinases has become an important target of numerous research projects due to their potential for applications, such as biocontrol pest agents. Plant chitinases from carnivorous plants of the genus are most aggressive against a wide range of phytopathogens. However, low solubility or insolubility of the target protein hampered application of chitinases as biofungicides.
View Article and Find Full Text PDFLaccase is one of the oldest known and intensively studied fungal enzymes capable of oxidizing recalcitrant lignin-resembling phenolic compounds. It is currently well established that fungal genomes almost always contain several non-allelic copies of laccase genes (laccase multigene families); nevertheless, many aspects of laccase multigenicity, for example, their precise biological functions or evolutionary relationships, are mostly unknown. Here, we present a detailed evolutionary analysis of the laccase genes (CAZy - AA1_1) from fungi of the Polyporales order.
View Article and Find Full Text PDFA system for the production of mutant recombinant human alpha-fetoprotein (rhAFPO) lacking the glycosylation site has been engineered in the yeast Pichia pastoris. A strain of the methylotrophic yeast Pichia pastoris GS 115/pPICZ?A/rhAFP0, which produces unglycosylated rhAFPO and secretes it to the culture medium, has been constructed. Optimization and scale-up of the fermentation technology have resulted in an increase in the rhAFP0 yield to 20 mg/L.
View Article and Find Full Text PDF