Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.
View Article and Find Full Text PDFWhile resting state electroencephalography (EEG) provides relevant information on pathological changes in Parkinson's disease, most studies focus on the eyes-closed EEG biomarkers. Recent evidence has shown that both eyes-open EEG and reactivity to eyes-opening can also differentiate Parkinson's disease from healthy aging, but no consensus has been reached on a discriminatory capability benchmark. The aim of this study was to determine the resting-state EEG biomarkers suitable for real-time application that can differentiate Parkinson's patients from healthy subjects under both eyes closed and open.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2007
The representation of the human electroencephalogram (EEG) records by neurophysiologists demands standardized time-amplitude scales for their correct conventional interpretation. In a suite of graphical experiments involving scaling affine transformations we have been able to convert electroencephalogram samples corresponding to any particular sleep phase and relaxed wakefulness into each other. We propound a statistical explanation for that finding in terms of data collapse.
View Article and Find Full Text PDFIntroduction And Aims: EEG signals emerge from the collective behaviour of large neuronal aggregates and betrays the information processed by neocortex. This electrophysiological collective activity varies with the brain function. Thus, one can ask whether there exists any indication of that neuronal activity in the EEG record.
View Article and Find Full Text PDF