Purpose: To study the adaptation of bacteria to the natural γ-background of mountains and anthropogenic emissions from nuclear power plants; to establish the main factors of variability and speciation of bacteria.
Method: Analysis of materials on the radiation background and its impact on living organisms in the landscape of Armenia, calculation of the absorbed dose by microbes due to rock radiation.
Results: The review shows the death, reproduction, radioresistance and speciation of bacteria in changing conditions of low variable natural and anthropogenic γ-background.
To advance high-energy atmospheric physics, studying atmospheric electric fields (AEF) and cosmic ray fluxes as an interconnected system is crucial. At Mt. Argats, simultaneous measurements of particle fluxes, electric fields, weather conditions, and lightning locations have significantly enhanced the validation of models that describe the charge structures of thunderclouds and the mechanics of internal electron accelerators.
View Article and Find Full Text PDFThe study presented the relationship between sudden Natural Gamma Radiation (NGR) increases related to enhanced atmospheric electric fields. We pinpoint Thunderstorm Ground Enhancements (TGEs) as the primary source of abrupt and significant NGR spikes. These TGEs, which are transient, several-minute-long increases in elementary particle fluxes, originate from natural electron accelerators within thunderclouds.
View Article and Find Full Text PDFLinelike features in TeV γ rays constitute a "smoking gun" for TeV-scale particle dark matter and new physics. Probing the Galactic Center region with ground-based Cherenkov telescopes enables the search for TeV spectral features in immediate association with a dense dark matter reservoir at a sensitivity out of reach for satellite γ-ray detectors, and direct detection and collider experiments. We report on 223 hours of observations of the Galactic Center region with the MAGIC stereoscopic telescope system reaching γ-ray energies up to 100 TeV.
View Article and Find Full Text PDFThere is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms.
View Article and Find Full Text PDF