The photodissociation dynamics of PCl3 at 235 nm has been studied by monitoring ground state Cl(2P3/2) and spin-orbitally excited Cl(2P1/2) atoms by resonance enhanced multiphoton ionization (REMPI). Also, the PCln+ (n = 0, 1, 2) photoions were observed non-resonantly. The speed distributions and speed-dependent anisotropy parameters β for all these particles have been determined by three-dimensional photofragment ion imaging.
View Article and Find Full Text PDFWe present a novel experimental configuration for the full quantitative characterization of the multichannel resonance enhanced multiphoton ionization (REMPI) of small molecules in cases when the ion-pair dissociation channel is important. For this purpose, a double-arm time-of-flight mass spectrometer with three-dimensional (3D) ion imaging detectors at both arms is constructed. The REMPI of HCl molecules is used to examine the constructed setup.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2014
Simultaneous imaging of both positive and negative product ions is used to exclusively study photoion pair formation free from interference of competing fragmentation channels. Resonance enhanced multi-photon excitation allows us to interrogate potential energy surfaces for vastly differing molecular geometries. 3D imaging provides complete fragment information.
View Article and Find Full Text PDFThe reactions of O((1)D) atoms with VF(5) at room temperature have been studied by time-resolved laser magnetic resonance at the buffer gas (SF(6)) pressure of 6 Torr. The O((1)D) atoms were produced by the photodissociation of ozone using an excimer laser (KrF, 248 nm). By monitoring the kinetics of FO radical formation, the bimolecular rate constant of O((1)D) consumption in collisions with VF(5) has been determined to be k(VF(5)) = (7.
View Article and Find Full Text PDF