Publications by authors named "A Chavez-Badiola"

The use of artificial intelligence (AI) in human reproduction is a rapidly evolving field with both exciting possibilities and ethical considerations. This technology has the potential to improve success rates and reduce the emotional and financial burden of infertility. However, it also raises ethical and privacy concerns.

View Article and Find Full Text PDF

Research Question: Can an artificial intelligence embryo selection assistant predict the incidence of first-trimester spontaneous abortion using static images of IVF embryos?

Design: In a blind, retrospective study, a cohort of 172 blastocysts from IVF cases with single embryo transfer and a positive biochemical pregnancy test was ranked retrospectively by the artificial intelligence morphometric algorithm ERICA. Making use of static embryo images from a light microscope, each blastocyst was assigned to one of four possible groups (optimal, good, fair or poor), and linear regression was used to correlate the results with the presence or absence of a normal fetal heart beat as an indicator of ongoing pregnancy or spontaneous abortion, respectively. Additional analyses included modelling for recipient age and chromosomal status established by preimplantation genetic testing for aneuploidy (PGT-A).

View Article and Find Full Text PDF

Human infertility is a major global public health issue estimated to affect one out of six couples, while the number of assisted reproduction cycles grows impressively year over year. Efforts to alleviate infertility using advanced technology are gaining traction rapidly as infertility has an enormous impact on couples and the potential to destabilize entire societies if replacement birthrates are not achieved. Artificial intelligence (AI) technologies, leveraged by the highly advanced assisted reproductive technology (ART) industry, are a promising addition to the armamentarium of tools available to combat global infertility.

View Article and Find Full Text PDF

The selection of the best single blastocyst for transfer is typically based on the assessment of the morphological characteristics of the zona pellucida (ZP), trophectoderm (TE), blastocoel (BC), and inner cell-mass (ICM), using subjective and observer-dependent grading protocols. We propose the first automatic method for segmenting all morphological structures during the different developmental stages of the blastocyst (i.e.

View Article and Find Full Text PDF

Research Question: Is it possible to explore an association between individual sperm kinematics evaluated in real time and spermatozoa selected by an embryologist for intracytoplasmic sperm injection (ICSI), with subsequent normal fertilization and blastocyst formation using a novel artificial vision-based software (SiD V1.0; IVF 2.0, UK)?

Design: ICSI procedures were randomly video recorded and subjected to analysis using SiD V1.

View Article and Find Full Text PDF