Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP-dependent stores.
View Article and Find Full Text PDFBy endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels.
View Article and Find Full Text PDFThe ability to sense pain signals is closely linked to the activity of ion channels expressed in nociceptors, the first neurons that transduce noxious stimuli into pain. Among these ion channels, TREK1, TREK2 and TRAAK from the TREK subfamily of the Two-Pore-Domain potassium (K) channels, are hyperpolarizing channels that render neurons hypoexcitable. They are regulated by diverse physical and chemical stimuli as well as neurotransmitters through G-protein coupled receptor activation.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2021
Fine tuning of Na reabsorption takes place along the aldosterone-sensitive distal nephron, which includes the collecting duct (CD), where it is mainly regulated by aldosterone. In the CD, Na reabsorption is mediated by the epithelial Na channel and Na pump (Na-K-ATPase). Paracellular ion permeability is mainly dependent on tight junction permeability.
View Article and Find Full Text PDFActivation and sensitization of trigeminal ganglia (TG) sensory neurons, leading to the release of pro-inflammatory peptides such as calcitonin gene-related peptide (CGRP), are likely a key component in migraine-related headache induction. Reducing TG neuron excitability represents therefore an attractive alternative strategy to relieve migraine pain. Here by using pharmacology and genetic invalidation and , we demonstrate that activating TREK1 and TREK2 two-pore-domain potassium (K) channels inhibits TG neuronal firing sufficiently to fully reverse the migraine-like phenotype induced by NO-donors in rodents.
View Article and Find Full Text PDF