Mutations of the gene, which encodes the voltage-dependent Na channel's α subunit, are associated with diverse epileptic syndromes ranging in severity, even intra-family, from febrile seizures to epileptic encephalopathy. The underlying cause of this variability is unknown, suggesting the involvement of additional factors. The aim of our study was to describe the properties of mutated channels and investigate genetic causes for clinical syndromes' variability in the family of five gene p.
View Article and Find Full Text PDFStudies conducted on large populations show a lack of connection between vaccination and serious neurological symptoms. However, there are isolated cases that indicate such a relationship. These reports on adverse effects following immunization (AEFI) reduce social confidence in vaccination; however, their background may be rare genetic defects.
View Article and Find Full Text PDFIntroduction: Mutations in the gene encoding keratin 1 cause epidermolytic hyperkeratosis characterized by blistering in the neonatal period followed by ichthyotic hyperkeratosis in childhood and adolescent life. We observed a spectrum of clinical manifestations of blistering disorders caused by different mutations in the same gene.
Aim: To analyse the phenotypic spectrum of blistering disorders caused by the mutations.
Objective: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder.
View Article and Find Full Text PDF