Publications by authors named "A Chandru"

Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration.

View Article and Find Full Text PDF

Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues.

View Article and Find Full Text PDF

Purpose: Chemical eye injury is an acute emergency that can result in vision loss. Neurotrophic keratitis (NK) is the most common long-term manifestation of chemical injury. NK due to alkali burn affects ocular surface health and is one of its most common causes.

View Article and Find Full Text PDF

Digital light processing (DLP) technology has gained significant attention for its ability to construct intricate structures for various applications in tissue modeling and regeneration. In this study, we aimed to design corneal lenticules using DLP bioprinting technology, utilizing dual network bioinks to mimic the characteristics of the human cornea. The bioink was prepared using methacrylated hyaluronic acid and methacrylated gelatin, where ruthenium salt and sodium persulfate were included for mediating photo-crosslinking while tartrazine was used as a photoabsorber.

View Article and Find Full Text PDF
Article Synopsis
  • * Deleting certain HDACs in embryonic stem cells (ESCs) unexpectedly reduces the expression of key pluripotency-related transcription factors despite HDACs being generally viewed as repressors.
  • * Inhibiting HDACs and the transcriptional activator BRD4 results in decreased expression of pluripotency genes, indicating that HDACs help maintain pluripotency by regulating enhancer activity and ensuring RNA polymerase II recruitment.
View Article and Find Full Text PDF