Background: Forecasts of future demand is foundational for effective resource allocation in emergency departments (EDs). As ED demand is inherently variable, it is important for forecasts to characterize the range of possible future demand. However, extant research focuses primarily on producing point forecasts using a wide variety of prediction algorithms.
View Article and Find Full Text PDFIn this work we introduce the personalized online super learner (POSL), an online personalizable ensemble machine learning algorithm for streaming data. POSL optimizes predictions with respect to baseline covariates, so personalization can vary from completely individualized, that is, optimization with respect to subject ID, to many individuals, that is, optimization with respect to common baseline covariates. As an online algorithm, POSL learns in real time.
View Article and Find Full Text PDFSMAC 2021 was a webconference organized in June 2021. The aim of this conference was to bring together data scientists, (bio)statisticians, philosophers, and any person interested in the questions of causality and Bayesian statistics, ranging from technical to philosophical aspects. This webconference consisted of keynote speakers and contributed speakers, and closed with a round-table organized in an unusual fashion.
View Article and Find Full Text PDFMicro-RNAs (miRNAs) are short (∼21 nt) non-coding RNAs that regulate gene expression through the degradation or translational repression of mRNAs. Accumulating evidence points to a role of miRNA regulation in the pathogenesis of a wide range of neurodegenerative (ND) diseases such as, for example, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease (HD). Several systems level studies aimed to explore the role of miRNA regulation in NDs, but these studies remain challenging.
View Article and Find Full Text PDF