Introduction: Recent research revealed that Tau plays critical roles in various neuronal functions. We previously demonstrated that destabilization and nuclear delocalization of Tau alter the expression of glutamatergic genes, mediating early neuronal damage.
Methods: In this study, we discovered that changes in Tau availability are linked to global alterations in gene expression that affect multiple neuronal pathways.
The African turquoise killifish Nothobranchius furzeri represents an emerging short-lived model for aging research. Captive strains of this species are characterized by large differences in lifespan. To identify the gene expression correlates of this lifespan differences, we analyzed a public transcriptomic dataset consisting of four different tissues in addition to embryos.
View Article and Find Full Text PDFAging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity.
View Article and Find Full Text PDFNeurotrophins (NTFs) are structurally related neurotrophic factors essential for differentiation, survival, neurite outgrowth, and the plasticity of neurons. Abnormalities associated with neurotrophin-signaling (NTF-signaling) were associated with neuropathies, neurodegenerative disorders, and age-associated cognitive decline. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) has the highest expression and is expressed in mammals by specific cells throughout the brain, with particularly high expression in the hippocampus and cerebral cortex.
View Article and Find Full Text PDF