The pathogenic expansion of the intronic GGGGCC hexanucleotide located in the non-coding region of the gene represents the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation leads to the accumulation of toxic RNA foci and dipeptide repeats (DPRs), as well as reduced levels of the C9orf72 protein. Thus, both gain and loss of function are coexisting pathogenic aspects linked to -ALS/FTD.
View Article and Find Full Text PDFSpinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13 hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates.
View Article and Find Full Text PDF