The three body fragmentation of methane dication has been studied using the technique of cold target recoil ion momentum spectroscopy. The process is initiated by impact of energetic Ar9+ ions on neutral methane and the data is subsequently collected in coincidence with Ar8+ projectile. By analysing the dissociation channels leading to (H + H+ + CH2+) and (H + H2+ + CH+) fragments, it is concluded that these fragments are formed in a sequential manner via formation of molecular intermediates CH3+ and CH2+ respectively.
View Article and Find Full Text PDFThe PELIICAEN (Platform for the Study of Ion Implantation Controlled and Analyzed at the Nanometric Scale) setup is a unique device, both for all of its in situ ultra-high vacuum equipment (focused ion beam column, secondary electron microscope, atomic force microscope, and scanning tunneling microscope) and for its nanostructuration performances on materials. The setup has been recently equipped with its own electron cyclotron resonance ion sources, a new position-controlled platform using pneumatic vibration insulators, and a fast pulsing device. Its performances were then deeply improved, providing access to a large choice of ions, an adjustable ion implantation depth up to a few hundred nanometers, an image resolution down to 25 nm, and an ion beam size on the sample down to 100 nm.
View Article and Find Full Text PDFThe ion-induced fragmentation of CH into H and CH is studied using a cold target recoil ion momentum spectroscopy in coincidence with the charge state of the post-collision projectile. Using constant velocity Ar and N, results from four different datasets are presented, with a selection on the final charge state of the projectile (Ar or Ar and N or N). Three distinct dissociation pathways (I, II, and III) are observed for each dataset, with the mean kinetic energy release values of around 4.
View Article and Find Full Text PDFVan der Waals clusters are weakly bound atomic/molecular systems and are an important medium for understanding micro-environmental chemical phenomena in bio-systems. The presence of neighboring atoms may open channels otherwise forbidden in isolated atoms/molecules. In hydrogen-bond clusters, proton transfer plays a crucial role, which involves mass and charge migration over large distances within the cluster and results in its fragmentation.
View Article and Find Full Text PDFFragmentation of molecular nitrogen dimers (N_{2})_{2} induced by collision with low energy 90 keV Ar^{9+} ions is studied to evidence the influence of a molecular environment on the fragmentation dynamics of N_{2} cations. Following the capture of three or four electrons from the dimer, the three-body N_{2}^{+}+N^{m+}+N^{n+} [with (m,n)=(1,1) or (1, 2)] fragmentation channels provide clean experimental cases where molecular fragmentation may occur in the presence of a neighbor molecular cation. The effect of the environment on the fragmentation dynamics within the dimer is investigated through the comparison of the kinetic energy release (KER) spectra for these three-body channels and for isolated N_{2}^{(m+n)+} monomer cations.
View Article and Find Full Text PDF