The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.
View Article and Find Full Text PDFBackground And Objective: Evidence regarding perioperative results and long-term functional outcomes of robotic-assisted kidney transplantation (RAKT) is limited. We evaluated perioperative surgical results and long-term functional outcomes of RAKT in patients receiving kidney transplants from living donors.
Methods: This retrospective analysis is based on a prospective multicenter cohort study conducted from July 2015 to October 2023 across ten European centers.
We present an in-depth electrophysiological analysis of Tse5, a pore-forming toxin (PFT) delivered by the type VI secretion system (T6SS) of Pseudomonas aeruginosa. The T6SS is a sophisticated bacterial secretion system that injects toxic effector proteins into competing bacteria or host cells, providing a competitive advantage by disabling other microbes and modulating their environment. Our findings highlight the dependency of Tse5 insertion on membrane charge and electrolyte concentration, suggesting an in vivo effect from the periplasmic space.
View Article and Find Full Text PDFBackground: For patients with refractory metastatic colorectal cancer (mCRC), trifluridine/tipiracil (FTD-TPI) has been associated with a significant improvement in overall survival (OS). However, data are lacking regarding the activity of FTD-TPI in patients with -mutated mCRC.
Methods: This retrospective, multicenter, international cohort included patients with -mutated mCRC treated with FTD-TPI in a real-life setting in Spain and Italy.
-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.
View Article and Find Full Text PDF