The study examines the impact of microstructure and polymethyl methacrylate (PMMA) grafting on the degradability of Zn-Mg alloys. The mechanical properties of a Zn alloy containing 0.68 wt% Mg and extruded at 200 °C are enhanced for degradable load-bearing applications, addressing a crucial need in the field.
View Article and Find Full Text PDFBiocompatible polymers such as polymethyl methacrylate (PMMA), despite fulfilling biomedical aspects, lack the mechanical strength needed for hard-tissue implant applications. This gap can be closed by using composites with metallic reinforcements, as their adaptable mechanical properties can overcome this problem. Keeping this in mind, novel Ti-mesh-reinforced PMMA composites were developed.
View Article and Find Full Text PDFThe thorough characterization of polymer chains grafted through a "grafting-from" process onto substrates based on the determination of number (Mn) and weight (Mw) average molar masses, as well as dispersity (Ɖ), is quite challenging. It requires the cleavage of grafted chains selectively at the polymer-substrate bond without polymer degradation to allow their analysis in solution with steric exclusion chromatography, in particular. The study herein describes a technique for the selective cleavage of PMMA grafted onto titanium substrate (Ti-PMMA) using an anchoring molecule that combines an atom transfer radical polymerization (ATRP) initiator and a UV-cleavable moiety.
View Article and Find Full Text PDFAlthough zinc (Zn) is one of the elements with the greatest potential for biodegradable uses, pure Zn does not have the ideal mechanical or degrading properties for orthopaedic applications. The current research aims at studying the microstructure and corrosion behaviour of pure Zn (used as a reference material) and Zn alloyed with 1.89 wt.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
Titanium (Ti) is the most widely used metal in biomedical applications because of its biocompatibility; however, the significant difference in the mechanical properties between Ti and the surrounding tissues results in stress shielding which is detrimental for load-bearing tissues. In the current study, to attenuate the stress shielding effect, a new processing route was developed. It aimed at growing thick poly(methyl methacrylate) (PMMA) layers grafted on Ti substrates to incorporate a polymer component on Ti implants.
View Article and Find Full Text PDF