Despite decades of intense research, glioma remains a disease for which no adequate clinical treatment exists. Given the ongoing therapeutic failures of conventional treatment approaches, nanomedicine may offer alternative options because it can increase the bioavailability of drugs and alter their pharmacokinetics. Here, a new type of synthetic protein nanoparticles (SPNPs) is reported that allow for effective loading and controlled release of the potent cancer drug, paclitaxel (PTX) - a drug that so far has been unsuccessful in glioma treatment due to hydrophobicity, low solubility, and associated delivery challenges.
View Article and Find Full Text PDFWe present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy.
View Article and Find Full Text PDFThe present study aimed to identify endogenous milk peptides for species differentiation independent of heat exposure. Thus, comprehensive milk peptide profiles from five species and three types of heat treatments were analyzed by micro-flow liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (microLC-IM-QTOF) with subsequent database search leading to ≥ 3000 identified peptides. In the milks, 1154 peptides were unique for cow, 712 for sheep, 466 for goat, 197 for buffalo, and 69 for mare.
View Article and Find Full Text PDF