Publications by authors named "A Cannizzo"

For decades, it was considered all but impossible to perform Stark spectroscopy on molecules in a liquid solution, because their concomitant orientation to the applied electric field results in overwhelming background signals. A way out was to immobilize the solute molecules by freezing the solvent. While mitigating solute orientation, freezing removes the possibility to study molecules in liquid environments at ambient conditions.

View Article and Find Full Text PDF

The synthesis and control of properties of p-type ZnO is crucial for a variety of optoelectronic and spintronic applications; however, it remains challenging due to the control of intrinsic midgap (defect) states. In this study, we demonstrate a synthetic route to yield colloidal ZnO quantum dots (QD) via an enhanced sol-gel process that effectively eliminates the residual intermediate reaction molecules, which would otherwise weaken the excitonic emission. This process supports the creation of ZnO with p-type properties or compensation of inherited n-type defects, primarily due to zinc vacancies under oxygen-rich conditions.

View Article and Find Full Text PDF

In fused donor-acceptor (D-A) ensembles, rapid charge recombination often occurs because the D and A units are spatially close and strongly coupled. To the best of our knowledge, a long-lived charge separated (CS) state is still elusive in such systems. The results presented here show that symmetric annulation of two tetrathiafulvalene (TTF) donors to a central tetraazapyrene (TAP) acceptor two quinoxaline units leads to a CS state lifetime of a few ns.

View Article and Find Full Text PDF

The fracture behavior of brittle and ductile materials can be strongly influenced by thermal fluctuations, especially in micro- and nanodevices as well as in rubberlike and biological materials. However, temperature effects, in particular on the brittle-to-ductile transition, still require a deeper theoretical investigation. As a step in this direction we propose a theory, based on equilibrium statistical mechanics, able to describe the temperature-dependent brittle fracture and brittle-to-ductile transition in prototypical discrete systems consisting in a lattice with breakable elements.

View Article and Find Full Text PDF

The ultrafast photochemical reaction of quinone methide (QM) formation from adamantylphenol was monitored in real time using femtosecond transient absorption spectroscopy and fluorescence upconversion in solution at room temperature. Experiments were complemented by theoretical studies simulating the reaction pathway and elucidating its mechanism. Excitation with sub-20 fs UV pulses and broadband probing revealed ultrafast formation of the long-lived QM intermediate directly in the ground state, occurring with a time constant of around 100 fs.

View Article and Find Full Text PDF