Publications by authors named "A Calci"

How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations.

View Article and Find Full Text PDF

We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3N) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest.

View Article and Find Full Text PDF

The weakly bound exotic ^{11}Be nucleus, famous for its ground-state parity inversion and distinct n+^{10}Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces. An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the ^{11}Be spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are capable of reproducing the parity inversion.

View Article and Find Full Text PDF

We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction.

View Article and Find Full Text PDF

We present the first ab initio construction of valence-space Hamiltonians for medium-mass nuclei based on chiral two- and three-nucleon interactions using the in-medium similarity renormalization group. When applied to the oxygen isotopes, we find experimental ground-state energies are well reproduced, including the flat trend beyond the drip line at (24)O. Similarly, natural-parity spectra in (21,22,23,24)O are in agreement with experiment, and we present predictions for excited states in (25,26)O.

View Article and Find Full Text PDF