Publications by authors named "A Cagnotto"

Alzheimer's disease, the leading cause of dementia globally, represents an unresolved clinical challenge due to its complex pathogenesis and the absence of effective treatments. Considering the multifactorial etiology of the disease, mainly characterized by the accumulation of amyloid β plaques and neurofibrillary tangles of tau protein, we discuss the A673V mutation in the gene coding for the amyloid precursor protein, which is associated with the familial form of Alzheimer's disease in a homozygous state. The mutation offers new insights into the molecular mechanisms of the disease, particularly regarding the contrasting roles of the A2V and A2T mutations in amyloid β peptide aggregation and toxicity.

View Article and Find Full Text PDF

Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5.

View Article and Find Full Text PDF

Prions are deadly infectious agents made of PrP, a misfolded variant of the cellular prion protein (PrP) which self-propagates by inducing misfolding of native PrP. PrP can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrP, eliciting a dual anti-prion effect.

View Article and Find Full Text PDF

We developed and validated a technology platform for designing and testing peptides inhibiting the infectivity of SARS-CoV-2 spike protein-based pseudoviruses. This platform integrates target evaluation, in silico inhibitor design, peptide synthesis, and efficacy screening. We generated a cyclic peptide library derived from the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor.

View Article and Find Full Text PDF