Industrial biocatalysis plays an important role in the development of a sustainable economy, as enzymes can be used to synthesize an enormous range of complex molecules under environmentally friendly conditions. To further develop the field, intensive research is being conducted on process technologies for continuous flow biocatalysis in order to immobilize large quantities of enzyme biocatalysts in microstructured flow reactors under conditions that are as gentle as possible in order to realize efficient material conversions. Here, monodisperse foams consisting almost entirely of enzymes covalently linked via SpyCatcher/SpyTag conjugation are reported.
View Article and Find Full Text PDFWe present protocols for high-level expression of isotope-labelled proteins in E. coli in cost-effective ways. This includes production of large amounts of unlabeled proteins and C-methyl methionine labeling in rich media, where yields of up to a gram of soluble protein per liter of culture are reached.
View Article and Find Full Text PDFRAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency.
View Article and Find Full Text PDFAuto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with (15)N, (13)C and/or (2)H in E. coli is presented.
View Article and Find Full Text PDFDifferential protein glycosylation in the donor and recipient can have profound consequences for transplanted organs, as evident in ABO-incompatible transplantation and xenotransplantation. In this study, we investigated the impact of altered fucosylation on graft acceptance by using donor mice overexpressing human α1,2-fucosyltransferase (HTF). Skin and heart grafts from HTF transgenic mice were rapidly rejected by otherwise completely matched recipients (median survival times 16 and 14 days, respectively).
View Article and Find Full Text PDF