Introduction: Sex differences in neuropsychological (NP) test performance might have important implications for the diagnosis of Alzheimer's disease (AD). This study investigates sex differences in neuropsychological performance among individuals without dementia at baseline.
Methods: Neuropsychological assessment data, both standard test scores and process coded responses, from Framingham Heart Study participants were analyzed for sex differences using regression model and Cox proportional hazards model.
While in the past technology has mostly been utilized to store information about the structural configuration of proteins and molecules for research and medical purposes, Artificial Intelligence is nowadays able to learn from the existing data how to predict and model properties and interactions, revealing important knowledge about complex biological processes, such as aging. Modern technologies, moreover, can rely on a broader set of information, including those derived from the next-generation sequencing (e.g.
View Article and Find Full Text PDFBackground: Neurological disorders pose a profound unmet medical need for which new solutions are urgently needed. The consideration of both biological (sex) and socio-cultural (gender) differences between men and women is necessary to identify more efficacious, safer and tailored treatments. Approaches for putting sex and gender medicine into practice have gathered momentum across Europe, but it is currently unclear to what extent they have been implemented in the field of neurology and neuroscience.
View Article and Find Full Text PDFAggregates of amyloid-beta (Aβ) and tau are hallmarks of Alzheimer's disease (AD) leading to neurodegeneration and synaptic loss. While increasing evidence suggests that inhibition of N-methyl-D-aspartate receptors (NMDARs) may mitigate certain aspects of AD neuropathology, the precise role of different NMDAR subtypes for Aβ- and tau-mediated toxicity remains to be elucidated. Using mouse organotypic hippocampal slice cultures from arcAβ transgenic mice combined with Sindbis virus-mediated expression of human wild-type tau protein (hTau), we show that Aβ caused dendritic spine loss independently of tau.
View Article and Find Full Text PDFSerum antibodies against amyloid-β peptide (Aβ) in humans with or without diagnosis of Alzheimer's disease (AD) indicate the possibility of immune responses against brain antigens. In an unbiased screening for antibodies directed against brain proteins, we found in AD patients high serum levels of antibodies against the neuronal cytoskeletal protein ankyrin G (ankG); these correlated with slower rates of cognitive decline. Neuronal expression of ankG was higher in AD brains than in nondemented age-matched healthy control subjects.
View Article and Find Full Text PDF