In mammals, the adult testis is the tissue with the highest diversity in gene expression. Much of that diversity is attributed to germ cells, primarily meiotic spermatocytes and postmeiotic haploid spermatids. Exploiting a newly developed cell purification method, we profiled the transcriptomes of such postmitotic germ cells of mice.
View Article and Find Full Text PDFComplex organisms originate from and are maintained by the information encoded in the genome. A major challenge of systems biology is to develop algorithms that describe the dynamic regulation of genome functions from large omics datasets. Here, we describe TETRAMER, which reconstructs gene-regulatory networks from temporal transcriptome data during cell fate transitions to predict "master" regulators by simulating cascades of temporal transcription-regulatory events.
View Article and Find Full Text PDFBackground: Genomic prediction aims to leverage genome-wide genetic data towards better disease diagnostics and risk scores. We have previously published a genomic risk score (GRS) for celiac disease (CD), a common and highly heritable autoimmune disease, which differentiates between CD cases and population-based controls at a clinically-relevant predictive level, improving upon other gene-based approaches. HLA risk haplotypes, particularly HLA-DQ2.
View Article and Find Full Text PDFVarious polymer matrices were tested to enhance progesterone bioavailability as part of an emergency therapy. Among the different polymers used, i.e.
View Article and Find Full Text PDFIn a systematic approach to the study of Saccharomyces cerevisiae genes of unknown function, 150 deletion mutants were constructed (1 double, 149 single mutants) and phenotypically analysed. Twenty percent of all genes examined were essential. The viable deletion mutants were subjected to 20 different test systems, ranging from high throughput to highly specific test systems.
View Article and Find Full Text PDF