Publications by authors named "A C Rex"

Traumatic spinal cord injury (SCI) is a devastating condition for which effective neuroregenerative and neuroreparative strategies are lacking. The post-traumatic disruption of the blood-spinal cord barrier (BSCB) as part of the neurovascular unit (NVU) is one major factor in the complex pathophysiology of SCI, which is associated with edema, inflammation, and cell death in the penumbra regions of the spinal cord adjacent to the lesion epicenter. Thus, the preservation of an intact NVU and vascular integrity to facilitate the regenerative capacity following SCI is a desirable therapeutic target.

View Article and Find Full Text PDF

The unique asymmetry of the Gram-negative outer membrane, with glycerophospholipids (GPLs) in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet, works to resist external stressors and prevent the entry of toxic compounds. Thus, GPL and LPS synthesis must be tightly controlled to maintain the integrity of this essential structure. We sought to decipher why organisms like possess two redundant pathways-PlsB and PlsX/Y-for synthesis of the GPL precursor lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

General anesthesia is considered a risk factor for postoperative cognitive dysfunction. However, it is unclear what the neuronal and cognitive consequences of general anesthesia are and whether they can be treated. One possible pathomechanism is hippocampal neurogenesis.

View Article and Find Full Text PDF

Paracrine cerebral Interleukin 6 (Il6) is relevant for stroke recovery, but systemic Il6 elevation may worsen outcome. Hence, paracrine Il6 response modulation within the neurovascular unit has emerged as an attractive therapeutic approach. Lithium modulates Il6 responses and improves stroke outcome.

View Article and Find Full Text PDF

Microglia are the immune effector cells of the central nervous system (CNS) and react to pathologic events with a complex process including the release of nitric oxide (NO). NO is a free radical, which is toxic for all cells at high concentrations. To target an exaggerated NO release, we tested a library of 16 544 chemical compounds for their effect on lipopolysaccharide (LPS)-induced NO release in cell line and primary neonatal microglia.

View Article and Find Full Text PDF