Background: Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of the wheat crop.
View Article and Find Full Text PDFBackground: Wheat straw, one of the most abundant agricultural residues worldwide, can be used to produce biogas, which is considered one of the most efficiently produced renewable energies. Wheat grown with the dual-purpose of producing food and biogas should display simultaneously high grain and straw yields, low lodging susceptibility and high conversion efficiency of straw into biogas. The aims of this study were to determine the best food-fuel dual-purpose wheat candidates among 36 wheat genotypes-including French, CIMMYT and local (Criollo) germplasm-used in breeding programs in Argentina and to gain some insights into the relationships between key traits relevant for dual-purpose wheat genotypes.
View Article and Find Full Text PDFFruiting efficiency (FE, grains per g of spike dry weight at anthesis) was proposed as a promising spike trait to improve wheat yield potential, based on its functional relationship with grain number determination and the evidence of trait variability in elite germplasm. During the last few years, we have witnessed great advances in the understanding of the physiological and genetic basis of this trait. The present review summarizes the recent heritability estimations and the genetic gains obtained when fruiting efficiency was measured at maturity (FEm, grains per g of chaff) and used as selection criterion.
View Article and Find Full Text PDFBiotrophic disease is one of the largest causes of decreased yield in agriculture. While exposure to ultraviolet B (UV-B) light (280-320 nm) has been previously observed to reduce plant susceptibility to disease, there is still a paucity of information regarding underlying biological mechanisms. In addition, recent advances in UV-LED technology raise the prospect of UV light treatments in agriculture which are practical and efficient.
View Article and Find Full Text PDFBackground: Increasing wheat (Triticum aestivum L.) production is required to feed a growing human population. In order to accomplish this task a deeper understanding of the genetic structure of cultivated wheats and the detection of genomic regions significantly associated with the regulation of important agronomic traits are necessary steps.
View Article and Find Full Text PDF