Publications by authors named "A C Guex"

The tumor microenvironment (TME), consisting of extracellular matrix, proteins, stromal cells, and a vascular system, is reported to have a key role in cancer progression and prognosis. Thereby, the interaction between the vascular network and tumor mass is an important feature of the TME since the anticancer agents which are delivered to the TME can trigger the vascular response and influence the therapeutic outcome of the treatment. To identify and develop new therapeutic strategies, 3D models that recapitulate the complexity of the TME are urgently needed.

View Article and Find Full Text PDF

Controlling the architecture of engineered scaffolds is of outmost importance to induce a targeted cell response and ultimately achieve successful tissue regeneration upon implantation. Robust, reliable and reproducible methods to control scaffold properties at different levels are timely and highly important. However, the multiscale architectural properties of electrospun membranes are very complex, in particular the role of fiber-to-fiber interactions on mechanical properties, and their effect on cell response remain largely unexplored.

View Article and Find Full Text PDF

Novel approaches, combining technology, biomaterial design, and cutting-edge cell culture, have been increasingly considered to advance the field of tissue engineering and regenerative medicine. Within this context, acoustic manipulation to remotely control spatial cellular organization within a carrier matrix has arisen as a particularly promising method during the last decade. Acoustic or sound-induced manipulation takes advantage of hydrodynamic forces exerted on systems of particles within a liquid medium by standing waves.

View Article and Find Full Text PDF

In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties.

View Article and Find Full Text PDF

Progressive antibiotic resistance is a serious condition adding to the challenges associated with skin wound treatment, and antibacterial wound dressings with alternatives to antibiotics are urgently needed. Cellulose-based membranes are increasingly considered as wound dressings, necessitating further functionalization steps. A bifunctional peptide, combining an antimicrobial peptide (AMP) and a cellulose binding peptide (CBP), is designed.

View Article and Find Full Text PDF