This study explores the incorporation of 10% 3-O-ethyl L-ascorbic acid (ETVC), a derivative of vitamin C, into two lipid gel systems: a hydrogel (HG) consisting exclusively of lipids and water and a bigel (BG) combining the hydrogel with an oleogel made from olive oil and beeswax. We investigated the ETVC release profiles from both materials using synthetic membranes and measured their permeation through porcine skin in vitro. Additionally, the interaction of these lipid gel systems with the stratum corneum (SC) was determined.
View Article and Find Full Text PDFTopical ocular drug delivery faces several challenges due to the eye's unique anatomy and physiology. Physiological barriers, tear turnover, and blinking hinder the penetration of drugs through the ocular mucosa. In this context, nanoparticles offer several advantages over traditional eye drops.
View Article and Find Full Text PDFNanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two different cryoprotectants, D-(+)-trehalose (NPs-TRE) and polyethylene glycol 3350 (NPs-PEG), sterilized by gamma (γ) irradiation, and gelled with Sepigel 305.
View Article and Find Full Text PDFThyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable PLGA nanoparticles (THO-NPs) that had been functionalized using several strategies.
View Article and Find Full Text PDF