Adipose-tissue-derived stem cells (ASCs) have received considerable attention due to their easy access, expansion potential, and differentiation capacity. ASCs are believed to have the potential to differentiate into neurons. However, the mechanisms by which this may occur remain largely unknown.
View Article and Find Full Text PDFMethods Mol Biol
September 2012
The stromal compartment of adipose tissue harbors mesenchymal stem cells (MSCs) (also called stromal stem cells) that display extensive proliferative capacity and multilineage differentiation potential. Such cells offer a practical avenue of generating patient-matched tissue for use in regenerative medicine. It is relatively easy to isolate these cells from adipose tissue in large enough quantities (tens of millions) to allow for their clinical use in a native, uncultured form.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) can differentiate into multiple mesodermal cell types in vitro; however, their differentiation capacity is influenced by their tissue of origin. To what extent epigenetic information on promoters of lineage-specification genes in human progenitors influences transcriptional activation and differentiation potential remains unclear. We produced bisulfite sequencing maps of DNA methylation in adipogenic, myogenic, and endothelial promoters in relation to gene expression and differentiation capacity, and unravel a similarity in DNA methylation profiles between MSCs isolated from human adipose tissue, bone marrow (BM), and muscle.
View Article and Find Full Text PDFThe differentiation capacity of mesenchymal stem cells has been extensively studied, but little is known on cell cycle-related events in the proliferation and differentiation phases of these cells. Here, we demonstrate that exposure to cAMP-increasing agents inhibits proliferation of adipose stem cells (ASCs). This antiproliferative effect is associated with both reduced cdk2 activity and pRB phosphorylation.
View Article and Find Full Text PDFTwo media used to mature adult porcine oocytes for somatic cell nuclear transfer were compared. In the first experiment, parthenogenetic embryos were produced using a maturation medium used by us previously to clone pigs (OMM199) and that described by Kühholzer et al. (2001) to transport oocytes overnight (BOMED).
View Article and Find Full Text PDF