With the onset of the COVID-19 pandemic 4 years ago, viral sequencing continues to document numerous individual mutations in the viral spike protein across many variants. To determine the ability of vaccine-mediated humoral immunity to combat continued SARS-CoV-2 evolution, we construct a comprehensive panel of pseudoviruses harboring each individual mutation spanning 4 years of the pandemic to understand the fitness cost and resistance benefits of each. These efforts identify numerous mutations that escape from vaccine-induced humoral immunity.
View Article and Find Full Text PDFPARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly optimized for trapping nor for selectivity among the PARP enzyme family. Previously we described the discovery of the second-generation PARP inhibitor AZD5305, a selective PARP1-DNA trapper.
View Article and Find Full Text PDFCommunication in biological systems typically involves enzymatic reactions that occur within fluids confined between the soft, elastic walls of bio-channels and chambers. Through the inherent transformation of chemical to mechanical energy, the fluids can be driven to flow within the confined domains. Through fluid-structure interactions, the confining walls in turn are deformed by and affect this fluid flow.
View Article and Find Full Text PDFQuantifying viral growth rates is key to understanding evolutionary dynamics and the potential for mutants to escape antiviral drugs. Defining evolutionary escape paths and their impact on viral fitness allows for the development of drugs that are resistant to escape. In the case of HIV, combination antiretroviral therapy can successfully prevent or treat infection, but it relies on strict adherence to prevent escape.
View Article and Find Full Text PDF