Publications by authors named "A Buxbaum"

Article Synopsis
  • Researchers have developed a method for single-molecule protein sequencing that accurately identifies peptide sequences in real time.
  • This technique uses dye-labeled amino acid recognizers and aminopeptidases to probe single peptides while recording fluorescence data on a semiconductor chip.
  • The method shows potential for detailed analysis of proteins, including the ability to detect single amino acid changes and modifications, paving the way for more accessible proteomic research.
View Article and Find Full Text PDF

Gene expression is tightly regulated by RNA-binding proteins (RBPs) to facilitate cell survival, differentiation, and migration. Previous reports have shown the importance of the Insulin-like Growth Factor II mRNA-Binding Protein (IGF2BP1/IMP1/ZBP1) in regulating RNA fate, including localization, transport, and translation. Here, we generated and characterized a knockout mouse to study RBP regulation.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a leading cause of inherited intellectual disability and autism. Whereas dysregulated RNA translation in Fmr1 knockout (KO) mice, a model of FXS, is well studied, little is known about aberrant transcription. Using single-molecule mRNA detection, we show that mRNA encoding the AMPAR subunit GluA2 (but not GluA1) is elevated in dendrites and at transcription sites of hippocampal neurons of Fmr1 KO mice, indicating elevated GluA2 transcription.

View Article and Find Full Text PDF

The transport and translation of dendritic mRNAs by RNA-binding proteins (RBPs) allows for spatially restricted gene expression in neuronal processes. Although local translation in neuronal dendrites is now well documented, there is little evidence for corresponding effects on local synaptic function. Here, we report that the RBP Sam68 promotes the localization and translation of Arc mRNA preferentially in distal dendrites of rodent hippocampal CA1 pyramidal neurons.

View Article and Find Full Text PDF

Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapse-specific targeting. To investigate this targeting, we derived a quantitative and analytical approach.

View Article and Find Full Text PDF