Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age.
View Article and Find Full Text PDFAging results from the progressive dysregulation of several molecular pathways and mTOR and AMPK signaling have been suggested to play a role in the complex changes in key biological networks involved in cellular senescence. Moreover, multiple factors, including poor nutritional balance, drive immunosenescence progression, one of the meaningful aspects of aging. Unsurprisingly, nutraceutical and pharmacological interventions could help maintain an optimal biological response by providing essential bioactive micronutrients required for the development, maintenance, and the expression of the immune response at all stages of life.
View Article and Find Full Text PDFSpirulina microalgae contain a plethora of nutrient and non-nutrient molecules providing brain health benefits. Numerous in vivo evidence has provided support for the brain health potential of spirulina, highlighting antioxidant, anti-inflammatory, and neuroprotective mechanisms. Preliminary clinical studies have also suggested that spirulina can help to reduce mental fatigue, protect the vascular wall of brain vessels from endothelial damage and regulate internal pressure, thus contributing to the prevention and/or mitigating of cerebrovascular conditions.
View Article and Find Full Text PDFGeneral anesthesia in animal experiments is an ethical must and is required for all the procedures that are likely to cause more than slight or momentary pain. As anesthetics are known to deeply affect experimental findings, including electrophysiological recordings of brain activity, understanding their mechanism of action is of paramount importance. It is widely recognized that the depth and type of anesthesia introduce significant bias in electrophysiological measurements by affecting the shape of both spontaneous and evoked signals, e.
View Article and Find Full Text PDF