Publications by authors named "A Burgasser"

Article Synopsis
  • Brown dwarf companions to stars help us understand planet formation processes, but some of them are more massive than expected based on their luminosities and host star ages.
  • Gliese 229 B, previously thought to be a single entity, was revealed through observations to actually be two brown dwarfs, Gliese 229 Ba and Bb, with masses of 38.1 and 34.4 Jupiter masses, respectively.
  • This discovery challenges existing theories and raises questions about the formation and occurrence of binary brown dwarfs in close orbits around stars.
View Article and Find Full Text PDF

Broad absorption signatures from alkali metals, such as the sodium (Na I) and potassium (K I) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances.

View Article and Find Full Text PDF

Brown dwarfs are massive analogs of extrasolar giant planets and may host types of atmospheric circulation not seen in the solar system. We analyzed a long-term Spitzer Space Telescope infrared monitoring campaign of brown dwarfs to constrain cloud cover variations over a total of 192 rotations. The infrared brightness evolution is dominated by beat patterns caused by planetary-scale wave pairs and by a small number of bright spots.

View Article and Find Full Text PDF

One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities.

View Article and Find Full Text PDF

Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example.

View Article and Find Full Text PDF