Publications by authors named "A Buras"

Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond to drought. The quantification of species-specific drought responses may help to identify the most climate-change-resilient tree species, thereby informing effective forest regeneration strategies.

View Article and Find Full Text PDF

With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species.

View Article and Find Full Text PDF

Tree phenology is a major component of the global carbon and water cycle, serving as a fingerprint of climate change, and exhibiting significant variability both within and between species. In the emerging field of drone monitoring, it remains unclear whether this phenological variability can be effectively captured across numerous tree species. Additionally, the drivers behind interspecific variations in the phenology of deciduous trees are poorly understood, although they may be linked to plant functional traits.

View Article and Find Full Text PDF
Article Synopsis
  • The future performance of European beech trees is uncertain due to their sensitivity to drought, and there is limited understanding of how climate change impacts their drought vulnerability across different regions.
  • The study uses a drought index to analyze how drought sensitivity of beech’s secondary growth varies over time, revealing that sensitivity is higher in dry environments and can be influenced by climatic conditions as well as tree competition within forests.
  • Results indicate that during severe droughts, beech growth may become less connected to climatic factors, suggesting a potential decline in drought tolerance and highlighting the complexity of the species' response to climate change.
View Article and Find Full Text PDF
Article Synopsis
  • * This study analyzed financial toxicity (FT) among 38 patients with advanced ovarian cancer, finding that 24% reported clinically significant FT, influenced by factors like income, employment status, and place of birth.
  • * The research highlights the need for further studies with larger and more diverse samples to better address the financial challenges faced by these patients and to develop effective interventions.
View Article and Find Full Text PDF