Publications by authors named "A Bupathy"

We investigate the two-dimensional behavior of colloidal patchy ellipsoids specifically designed to follow a two-step assembly process from the monomer state to mesoscopic liquid-crystal phases via the formation of the so-called bent-core units at the intermediate stage. Our model comprises a binary mixture of ellipses interacting via the Gay-Berne potential and decorated by surface patches, with the binary components being mirror-image variants of each other-referred to as left-handed and right-handed ellipses according to the position of their patches. The surface patches are designed so as in the first stage of the assembly the monomers form bent-cores units, i.

View Article and Find Full Text PDF

Multicomponent self-assembly mixtures offer the possibility of encoding multiple target structures with the same set of interacting components. Selective retrieval of one of the stored structures has been attempted by preparing an initial state that favors the assembly of the required target, through seeding, concentration patterning, or specific choices of interaction strengths. This may not be possible in an experiment where on-the-fly reconfiguration of the building blocks to switch functionality may be required.

View Article and Find Full Text PDF

Magnetic and dielectric solids are well-represented by the Ising model with dipolar interactions (IM+DI). The latter are long-ranged, fluctuating in sign, and anisotropic. Equilibrium studies have revealed novel consequences of these complicated interactions, but their effect on nonequilibrium behavior is not explored.

View Article and Find Full Text PDF

We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δ_{c} at zero temperature with high accuracy. For the SC lattice, our estimate (Δ_{c}=2.

View Article and Find Full Text PDF