Quantum memory effects can be qualitatively understood as a consequence of an environment-to-system backflow of information. Here, we analyze and compare how this concept is interpreted and implemented in different approaches to quantum non-Markovianity. We study a nonoperational approach, defined by the distinguishability between two system states characterized by different initial conditions, and an operational approach, which is defined by the correlation between different outcomes associated to successive measurement processes performed over the system of interest.
View Article and Find Full Text PDFWe study a linear Langevin dynamics driven by an additive non-Markovian symmetrical dichotomic noise. It is shown that when the statistics of the time intervals between noise transitions is characterized by two well differentiated timescales, the stationary distribution may develop multimodality (bi- and trimodality). The underlying effects that lead to a probability concentration in different points include intermittence and also a dynamical locking of realizations.
View Article and Find Full Text PDFPhys Rev Lett
December 2018
For classical Markovian stochastic systems, past and future events become statistically independent when conditioned to a given state at the present time. Memory non-Markovian effects break this condition, inducing a nonvanishing conditional past-future correlation. Here, this classical memory indicator is extended to a quantum regime, which provides an operational definition of quantum non-Markovianity based on a minimal set of three time-ordered quantum system measurements and postselection.
View Article and Find Full Text PDFThe first-passage-time (FPT) problem is studied for superstatistical models assuming that the mesoscopic system dynamics is described by a Fokker-Planck equation. We show that all moments of the random intensive parameter associated to the superstatistical approach can be put in one-to-one correspondence with the moments of the FPT. For systems subjected to an additional uncorrelated external force, the same statistical information is obtained from the dependence of the FPT moments on the external force.
View Article and Find Full Text PDFThe ensemble properties and time-averaged observables of a memory-induced diffusive-superdiffusive transition are studied. The model consists in a random walker whose transitions in a given direction depend on a weighted linear combination of the number of both right and left previous transitions. The diffusion process is nonstationary, and its probability develops the phenomenon of aging.
View Article and Find Full Text PDF