Publications by authors named "A Bruchhausen"

Time crystals (TCs) are many-body systems that display spontaneous breaking of time translation symmetry. We demonstrate a TC by using driven-dissipative condensates of microcavity exciton-polaritons, spontaneously formed from an incoherent particle bath. The TC phases are controlled by the power of a continuous-wave nonresonant optical drive exciting the condensate and the interaction with cavity phonons.

View Article and Find Full Text PDF

Lattices of exciton-polariton condensates represent an attractive platform for the study and implementation of non-Hermitian bosonic quantum systems with strong non-linear interactions. The possibility to actuate on them with a time dependent drive could provide for example the means to induce resonant inter-level transitions, or to perform Floquet engineering or Landau-Zener-Stückelberg state preparation. Here, we introduce polaromechanical metamaterials, two-dimensional arrays of μm-sized traps confining zero-dimensional light-matter polariton fluids and GHz phonons.

View Article and Find Full Text PDF

Ultrahigh-frequency acoustic-phonon resonators usually require atomically flat interfaces to avoid phonon scattering and dephasing, leading to expensive fabrication processes, such as molecular beam epitaxy. Mesoporous thin films are based on inexpensive wet chemical fabrication techniques that lead to relatively flat interfaces regardless the presence of nanopores. Here, we report mesoporous titanium dioxide-based acoustic resonators with resonances up to 90 GHz, and quality factors from 3 to 7.

View Article and Find Full Text PDF

Efficient generation of phonons is an important ingredient for a prospective electrically-driven phonon laser. Hybrid quantum systems combining cavity quantum electrodynamics and optomechanics constitute a novel platform with potential for operation at the extremely high frequency range (30-300 GHz). We report on laser-like phonon emission in a hybrid system that optomechanically couples polariton Bose-Einstein condensates (BECs) with phonons in a semiconductor microcavity.

View Article and Find Full Text PDF

A time-resolved observation of coherent interlayer longitudinal acoustic phonons in thin layers of 2H-MoSe2 is reported. A femtosecond pump-probe technique is used to investigate the evolution of the energy loss of these vibrational modes in a wide selection of MoSe2 flakes with different thicknesses ranging from bilayer up to the bulk limit. By directly analysing the temporal decay of the modes, we can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed on the acoustic decay channels when reducing the dimensionality.

View Article and Find Full Text PDF