The presence of aquatic biopolymeric organic carbon of high (> 10 - 20 kDa) molecular weight (high-MW OC) in drinking water produced from surface water affects its biological stability which may cause regrowth in disinfectant-free distribution. This study compares two analytical methods for determining the concentration of aquatic high-MW OC, namely LC-OCD (liquid chromatography - organic carbon detection) and PHMOC (particulate and colloidal high-molecular weight OC). LC-OCD entails prefiltration of the water sample, chromatographical separation of the relevant biopolymer (BP) OC-fraction, and in-line OC detection.
View Article and Find Full Text PDFNine novel biological stability parameters for drinking water have been developed recently. Here, we report data for these nine parameters in treated water from 34 treatment plants in the Netherlands to deduce guidance values for these parameters. Most parameters did not show a strong correlation with another biological stability parameter in the same sample, demonstrating that most parameters hold different information on the biological stability of drinking water.
View Article and Find Full Text PDFWorldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.
View Article and Find Full Text PDFUnlabelled: Legionella pneumophila proliferates in freshwater environments at temperatures ranging from 25 to 45°C. To investigate the preference of different sequence types (ST) for a specific temperature range, growth of L. pneumophila serogroup 1 (SG1) ST1 (environmental strains), ST47, and ST62 (disease-associated strains) was measured in buffered yeast extract broth (BYEB) and biofilms grown on plasticized polyvinyl chloride in flowing heated drinking water originating from a groundwater supply.
View Article and Find Full Text PDF