Stud Health Technol Inform
May 2024
This paper explores the potential of leveraging electronic health records (EHRs) for personalized health research through the application of artificial intelligence (AI) techniques, specifically Named Entity Recognition (NER). By extracting crucial patient information from clinical texts, including diagnoses, medications, symptoms, and lab tests, AI facilitates the rapid identification of relevant data, paving the way for future care paradigms. The study focuses on Non-small cell lung cancer (NSCLC) in Italian clinical notes, introducing a novel set of 29 clinical entities that include both presence or absence (negation) of relevant information associated with NSCLC.
View Article and Find Full Text PDFThis paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images. Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found. To address this, our approach introduces a new type of pixel-based anchor that dynamically moves towards the targeted lesion for detection.
View Article and Find Full Text PDFArtif Intell Med
September 2023
Difference of Gaussians (DoG) convolutional filters are one of the earliest image processing methods employed for detecting microcalcifications on mammogram images before machine and deep learning methods became widespread. DoG is a blob enhancement filter that consists in subtracting one Gaussian-smoothed version of an image from another less Gaussian-smoothed version of the same image. Smoothing with a Gaussian kernel suppresses high-frequency spatial information, thus DoG can be regarded as a band-pass filter.
View Article and Find Full Text PDF