Publications by authors named "A Brechmann"

The lateralization of processing in the auditory cortex for different acoustic parameters differs depending on stimuli and tasks. Thus, processing complex auditory stimuli requires an efficient hemispheric interaction. Anatomical connectivity decreases with aging and consequently affects the functional interaction between the left and right auditory cortex and lateralization of auditory processing.

View Article and Find Full Text PDF

Many challenges in life come without explicit instructions. Instead, humans need to test, select, and adapt their behavioral responses based on feedback from the environment. While reward-centric accounts of feedback processing primarily stress the reinforcing aspect of positive feedback, feedback's central function from an information-processing perspective is to offer an opportunity to correct errors, thus putting a greater emphasis on the informational content of negative feedback.

View Article and Find Full Text PDF

Distractibility is one of the key features of attention deficit hyperactivity disorder (ADHD) and has been associated with alterations in the neural orienting and alerting networks. Task-irrelevant stimuli are thus expected to have detrimental effects on the performance of patients with ADHD. However, task-irrelevant presentation of sounds seems to have the opposite effect and improve subsequent attentional performance particularly in patients with ADHD.

View Article and Find Full Text PDF

Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is one of the most prominent non-invasive electrical brain stimulation method to alter neuronal activity as well as behavioral processes in cognitive and perceptual domains. However, the exact mode of action of tDCS-related cortical alterations is still unclear as the results of tDCS studies often do not comply with the somatic doctrine assuming that anodal tDCS enhances while cathodal tDCS decreases neuronal excitability. Changes in the regional cortical neurotransmitter balance within the stimulated cortex, measured by excitatory and inhibitory neurotransmitter levels, have the potential to provide direct neurochemical underpinnings of tDCS effects.

View Article and Find Full Text PDF