Publications by authors named "A Brazdeikis"

Multiple formulations of iron oxide nanoparticles (IONPs) have been proposed for enhancing contrast in magnetic resonance imaging (MRI) and for increasing efficacy in thermal ablation therapies. However, insufficient accumulation at the disease site and low magnetic performance hamper the clinical application of IONPs. Here, 20 nm iron oxide nanocubes were assembled into larger nanoconstructs externally stabilized by a serum albumin coating.

View Article and Find Full Text PDF

Magnetic sensing utilizes the detection of biomolecule-conjugated magnetic nanoparticles (MNPs). Our new strategy offers a novel approach to magnetic sensing where in situ conversion produces a "loss of signal" in the sensing device. This report demonstrates the enzymatic conversion of Fe3O4 MNPs to a non-magnetic precipitate via reduction by l-ascorbic acid generated by the action of alkaline phosphatase.

View Article and Find Full Text PDF

The research strategy described in this manuscript harnesses the attractive properties of hydrogels, gold nanorods (Aurods), and magnetic nanoparticles (MNPs) by synthesizing one unique multi-responsive nanostructure. This novel hybrid structure consists of silica-coated magnetic particles encapsulated within a thermo-responsive P(NIPAM-co-AA) hydrogel network on which Aurods are assembled. Furthermore, this research demonstrates that these composite particles respond to several forms of external stimuli (temperature, pH, light, and/or applied magnetic field) owing to their specific architecture.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IOs) are intrinsically theranostic agents that could be used for magnetic resonance imaging (MRI) and local hyperthermia or tissue thermal ablation. Yet, effective hyperthermia and high MR contrast have not been demonstrated within the same nanoparticle configuration. Here, magnetic nanoconstructs are obtained by confining multiple, ∼ 20 nm nanocubes (NCs) within a deoxy-chitosan core.

View Article and Find Full Text PDF

A plethora of magnetic nanoparticles has been developed and investigated under different alternating magnetic fields (AMF) for the hyperthermic treatment of malignant tissues. Yet, clinical applications of magnetic hyperthermia are sporadic, mostly due to the low energy conversion efficiency of the metallic nanoparticles and the high tissue concentrations required. Here, we study the hyperthermic performance of commercially available formulations of superparamagnetic iron oxide nanoparticles (SPIOs), with core diameter of 5, 7 and 14 nm, in terms of absolute temperature increase ΔT and specific absorption rate (SAR).

View Article and Find Full Text PDF