Marburg virus (MARV) causes lethal hemorrhagic fever in humans, posing a threat to global health. We determined by cryogenic electron microscopy (cryo-EM) the MARV helical ribonucleoprotein (RNP) complex structure in single-layered conformation, which differs from the previously reported structure of a double-layered helix. Our findings illuminate novel RNP interactions and expand knowledge on MARV genome packaging and nucleocapsid assembly, both processes representing attractive targets for the development of antiviral therapeutics against MARV disease.
View Article and Find Full Text PDFThis study presents what we believe is the first extensive assessment of the water reflectance products from the German hyperspectral Environmental Mapping and Analysis Program (EnMAP). We evaluate EnMAP's standard normalized water leaving reflectance [ρ] over 17 water sites in the first two years of the mission. The EnMAP [ρ] standard product is generated by a dedicated water atmospheric correction (AC) called the Modular Inversion Program (MIP).
View Article and Find Full Text PDFSeveral proteins associated with neurodegenerative diseases, such as the mammalian prion protein (PrP), undergo liquid-liquid phase separation (LLPS), which led to the hypothesis that condensates represent precursors in the formation of neurotoxic protein aggregates. However, the mechanisms that trigger aberrant phase separation are incompletely understood. In prion diseases, protease-resistant and infectious amyloid fibrils are composed of N-terminally truncated PrP, termed C2-PrP.
View Article and Find Full Text PDFChaperonins are large barrel-shaped complexes that mediate ATP-dependent protein folding. The bacterial chaperonin GroEL forms juxtaposed rings that bind unfolded protein and the lid-shaped cofactor GroES at their apertures. In vitro analyses of the chaperonin reaction have shown that substrate protein folds, unimpaired by aggregation, while transiently encapsulated in the GroEL central cavity by GroES.
View Article and Find Full Text PDFThe ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins.
View Article and Find Full Text PDF