Publications by authors named "A Bouzerdoum"

Echo planar imaging (EPI), a fast magnetic resonance imaging technique, is a powerful tool in functional neuroimaging studies. However, susceptibility artifacts, which cause misinterpretations of brain functions, are unavoidable distortions in EPI. This paper proposes an end-to-end deep learning framework, named TS-Net, for susceptibility artifact correction (SAC) in a pair of 3D EPI images with reversed phase-encoding directions.

View Article and Find Full Text PDF

Source positioning using hybrid angle-of-arrival (AOA) estimation and received signal strength indicator (RSSI) is attractive because no synchronization is required among unknown nodes and anchors. Conventionally, hybrid AOA/RSSI localization combines the same number of these measurements to estimate the agents' locations. However, since AOA estimation requires anchors to be equipped with large antenna arrays and complicated signal processing, this conventional combination makes the wireless sensor network (WSN) complicated.

View Article and Find Full Text PDF

Echo planar imaging (EPI) is a fast and non-invasive magnetic resonance imaging technique that supports data acquisition at high spatial and temporal resolutions. However, susceptibility artifacts, which cause the misalignment to the underlying structural image, are unavoidable distortions in EPI. Traditional susceptibility artifact correction (SAC) methods estimate the displacement field by optimizing an objective function that involves one or more pairs of reversed phase-encoding (PE) images.

View Article and Find Full Text PDF

This paper addresses the problem of wall clutter mitigation and image reconstruction for through-wall radar imaging (TWRI) of stationary targets by seeking a model that incorporates low-rank (LR), joint sparsity (JS), and total variation (TV) regularizers. The motivation of the proposed model is that LR regularizer captures the low-dimensional structure of wall clutter; JS guarantees a small fraction of target occupancy and the similarity of sparsity profile among channel images; TV regularizer promotes the spatial continuity of target regions and mitigates background noise. The task of wall clutter mitigation and target image reconstruction is formulated as an optimization problem comprising LR, JS, and TV regularization terms.

View Article and Find Full Text PDF

Pedestrian lane detection is an important task in many assistive and autonomous navigation systems. This article presents a new approach for pedestrian lane detection in unstructured environments, where the pedestrian lanes can have arbitrary surfaces with no painted markers. In this approach, a hybrid deep learning-Gaussian process (DL-GP) network is proposed to segment a scene image into lane and background regions.

View Article and Find Full Text PDF